3,949 research outputs found

    Coherent transport of matter waves

    Get PDF
    A transport theory for atomic matter waves in low-dimensional waveguides is outlined. The thermal fluctuation spectrum of magnetic near fields leaking out of metallic microstructures is estimated. The corresponding scattering rate for paramagnetic atoms turns out to be quite large in micrometer-sized waveguides (approx. 100/s). Analytical estimates for the heating and decoherence of a cold atom cloud are given. We finally discuss numerical and analytical results for the scattering from static potential imperfections and the ensuing spatial diffusion process.Comment: 9 pages incl. 10 PostScript figures (.eps), LaTeX using Springer style file svjour, submitted to Appl. Phys.

    Two-time autocorrelation function in phase-ordering kinetics from local scale-invariance

    Full text link
    The time-dependent scaling of the two-time autocorrelation function of spin systems without disorder undergoing phase-ordering kinetics is considered. Its form is shown to be determined by an extension of dynamical scaling to a local scale-invariance which turns out to be a new version of conformal invariance. The predicted autocorrelator is in agreement with Monte-Carlo data on the autocorrelation function of the 2D kinetic Ising model with Glauber dynamics quenched to a temperature below criticality.Comment: Latex2e, 7 pages with 2 figures, with epl macro, final from, to appear in EP

    On the feasibility of studying vortex noise in 2D superconductors with cold atoms

    Full text link
    We investigate the feasibility of using ultracold neutral atoms trapped near a thin superconductor to study vortex noise close to the Kosterlitz-Thouless-Berezinskii transition temperature. Alkali atoms such as rubidium probe the magnetic field produced by the vortices. We show that the relaxation time T1T_1 of the Zeeman sublevel populations can be conveniently adjusted to provide long observation times. We also show that the transverse relaxation times T2T_2 for Zeeman coherences are ideal for studying the vortex noise. We briefly consider the motion of atom clouds held close to the surface as a method for monitoring the vortex motion.Comment: 4 pages, 1 figur

    On the spectral distribution of photons between planar interfaces

    Get PDF
    Using a phenomenological approach to field quantization, an expression for the Keldysh function of photons between two planar interfaces (Casimir geometry) is found for any stationary quantum state of the two bodies. The case of one interface sliding against the other is considered in detail

    Thermal effects in the magnetic Casimir-Polder interaction

    Full text link
    We investigate the magnetic dipole coupling between a metallic surface and an atom in a thermal state, ground state and excited hyperine state. This interaction results in a repulsive correction and - unlike the electrical dipole contribution - depends sensitively on the Ohmic dissipation in the material

    Kinetics of the long-range spherical model

    Full text link
    The kinetic spherical model with long-range interactions is studied after a quench to T<TcT < T_c or to T=TcT = T_c. For the two-time response and correlation functions of the order-parameter as well as for composite fields such as the energy density, the ageing exponents and the corresponding scaling functions are derived. The results are compared to the predictions which follow from local scale-invariance.Comment: added "fluctuation-dissipation ratios"; fixed typo
    • …
    corecore